The Jicey racing car becomes the standard-bearer of the company. Integrating the company’s innovations, it promotes the company image and know-how on the circuits.

The first Jicey F1 chassis, conceived and manufactured by the engineer and inventor Jean Caillas, father of the current company President, was sold on the very day it was first exhibited at the Grand Palais car show in Paris. The purchaser was a young and brilliant Belgian driver, Georges Berger, who came from an industrial family.

He took on a remarkably skilled French mechanic, René Fohret, who was acquaint- ed with every detail of the car as he had taken part in the making of it at the Jicey plant in Viroflay, rue d’Estienne d’Orves.

The chassis in light alloy AGS in the form of a ventilated box, very ahead of its time, was both light and rigid. Consequently, its road holding qualities enabled the 2.4-litre, 6-cylinder BMW 328 engine with its 3 carburettors to attain its maximum performance. All in all, it made a brilliant sports car capable of competing, often successfully, with the Cordini and Ferrari single-seaters.

In 1948, during his first competition season, the Jicey driven by Georges Berger wowed the crowds at the Roussillon Grand Prix in Perpignan, at the ‘Circuit des Remparts’ in Angoulême and at the ‘Coupe d’Argent’ in Monthéry. The competition season of 1950 was a particularly busy time as the Jicey raced on the biggest circuits in Europe such as the Grand Prix of Mons in Belgium, the Grand Prix of Rome in Italy, the Grand Prix of Nürburgring in Germany and at the Grand Trophée between Sambre and Meuse in Belgium. In the same year and with the same Georges Berger at the wheel, the swift Jicey came third at the Grand Prix des Frontières in Chimay after an exemplary struggle, beating the Vittas, the Maserati and the Ferrari 166 MM belonging to Hermann Roosdorp.

Wearing his helmet, Georges Berger carefully observes the adjustment work carried out by his talented mechanic, René Fohret. The lightweight bonnet could be lifted with ease to gain access to the engine for any adjustments required before and sometimes during the race. We notice the impressive battery of the 3 vertical carburettors mounted in series at the top of the cylinder head, very characteristic of the 2.4-litre BMW 328. We can also see the striking shape of the exhaust manifold that brings the 6 cylinder outlets into one tube such that they may demonstrate their synchronized power as one, sometimes accompanied by flames!

Photo centrale

The first Jicey car is characterized by a profiled head-rest that was not only aesthetic, but extremely functional. When Georges Berger happened to be the victim of an off roadway accident during his first race at the Roussillon Grand Prix in Perpignan on the 25th April 1948, the head-rest saved his life. The car somersaulted several times and the driver’s head was protected by the head- rest that stuck the ground. Berger escaped unscathed and bravely took to the wheel once again. Note the name of the Drivers and the mention of the young “Ecurie Jicey” on the left-hand side of the single-seater.

27- 31 rue d’Estienne d’Orves - BP 22 - F-78221 VIROFLAY Cedex
FRANCE
Tel : 33 (0)1 30 24 31 87
Fax : 33 (0)1 30 24 31 87
infos@jicey.com
www.jicey.com

Jicey : All precision adjustment solutions

Jicey’s strength, which may explain how the company is solicited by every type of industry, including the aeronautical, public works, optical and micro-electronics industries, lies in the fact that we do not sell a simple product, we provide the perfect solution to each and every specific adjustment problem. Adjustment shims are an ingenious answer to any mechanical assembly problem. With its full range of adjustment shims (laminated peelable shims, solid shims, extra-thin shims, separable shims), Jicey has the know-how to be able to challenge any adjustment predicament. As described in the article dedicated to Recif Technologies, using Jicey adjustment shims enables customers to save precious time during assembly procedures and to economise in comparison with more classic solutions used to compensate the play resulting from added machining tolerances. Adjustment shims have become an inevitable accessory for every engineering and design department across the globe. As technology continues to develop, Jicey continues to innovate, optimising comfort of use with its Vievlek laminated peelable shims in composite materials, and using a process for marking the thickness of the individual layers.
Recif Technologies, the ineluctable international contender of the high-technology micro-electronics sector has opted for Jicey's adjustment shim for its silicon wafer handling equipment.

Perfect peelability: An asset that makes all the difference

From Viewtek laminated peelable shims to bi-composite laminated peelable shims, in addition to separable shims, the excellent peelability of the Jicey products is an indisputable asset for our customers. Increasingly innovative and sensitive to the high standards, in terms of peelability, of the products. For high precision and time-saving during assembly, the Jicey peelable shims must be able to be peeled quickly using a scalpel (for composite shims) or bare hand (for composite shims). As opposed to classic shims that need to be altered, (which is a long and costly procedure), Jicey enables technicians to save a considerable amount of time during assembly and to avoid deadtime during production, whilst procuring optimum precision.

The Shimpack: A solution to assembling problems in the most difficult environments

Taking up a real challenge! The biggest Jicey shim: 20 metres in diameter

A few years ago, at the request of a multinational company, Jicey manufactured a truly incredible shim. Determined to satisfy its customers in every way, Jicey did not hesitate to rally each and every member of the team to manufacture a shim of 20 metres in diametercomprising over 10 segments. Now located on a pumping platform, this shim marks the outcome of the performance process to which Jicey was, and continues to be devoted to.

Perfect peelability: An asset that makes all the difference

All of the adjustment rings had to be shipped to Asia or to the United States to blister pack film, air-bubble packaging material, or in accordance with any specific customer requests, as Jicey always makes sure its products are carried from the workshops to their final place of use with the maximum protection.

Purpose of shims in composite materials: To outperform metal shims

Whether you work in the car, aeronautics, space or public works industry, you already use, or will at some point be using Jicey laminated peelable shims made of composite materials. As Jicey continues to innovate these new shims, the demand for classic metal shims is becoming lesser.

In what terms of peelability, lightness, safety of use, high temperature or chemical, they often surpass the metal shims used up until now. Moreover, our laminated peelable shims in composite materials boast dual functionality, and can thus be used for their sealing capacities at the very least, like a flat gasket.
SOLUTIONS & INNOVATIONS

IN A NUTSHELL

Recif Technologies, the ineluctable international contender of the high-technology micro-electronics sector has opted for Jicey’s adjustment shims for its silicon wafer handling equipment.

Very day, millions of people use an array of information and communication networks all over the world. We are indirectly indebted to Recif Technologies for the daily exchange of images, sound and information of all kinds. Everyone has heard of semiconductor and integrated circuits, and even more so, of the famous chip. But who has ever heard of silicon wafers that are the physical support for these chips?

Recif Technologies therefore offers a range of manual, automated and robotic products to handle these wafers. Recif Technologies’ development is focused on robots that integrate more and more flexibly in the process environment in which Recif Technologies works: the semiconductor industry. It resembles a laboratory as the process environment requires so-called “class 1 white rooms” (no more than one particle of over 0.16 microns per cubic foot), to prevent any risk of contamination. Contamination could destroy the chips, and the consequences in terms of costs are extremely serious, given that just one finished wafer can cost up to 100 000 dollars.

Recif Technologies continues to develop in the micro-electronics sector, manufacturing equipment used to handle and identify silicon wafers during the integrated circuit production process, in particularly stringent conditions of cleanliness.

The wafers come in the form of single crystal silicon disks, and each undergoes a large number of physicochemical transformations (sometimes over 500) that require them to be handled frequently. Recif Technologies therefore offers a range of manual, automated and robotic products to handle these wafers. Recif Technologies’ development is focused on robots that integrate more and more flexibly in the process environment in which Recif Technologies works: the semiconductor industry. It resembles a laboratory as the process environment requires so-called “class 1 white rooms” (no more than one particle of over 0.16 microns per cubic foot), to prevent any risk of contamination. Contamination could destroy the chips, and the consequences in terms of costs are extremely serious, given that just one finished wafer can cost up to 100 000 dollars.

Recif Technologies offers a fully automatic handling system for thin silicon wafer handling. The system can be used for various applications and is a solution for handling silicon wafers from the wafer fabrication process to the final assembly. The system is designed to handle wafers with diameters ranging from 200 mm to 8 inches.

The system is based on a robotic arm that precisely picks up the wafers from the wafer fab and places them on the assembly line. The robotic arm is guided by a computer program that ensures the highest level of precision and repeatability.

The system is designed to handle wafers with diameters ranging from 200 mm to 8 inches. It can handle wafers with thicknesses ranging from 100 to 600 microns, which is a significant advantage in the semiconductor industry. The system is designed to be flexible and can be adapted to different wafer sizes and thicknesses.

The system is designed to handle wafers with diameters ranging from 200 mm to 8 inches. It can handle wafers with thicknesses ranging from 100 to 600 microns, which is a significant advantage in the semiconductor industry. The system is designed to be flexible and can be adapted to different wafer sizes and thicknesses.

The system is designed to handle wafers with diameters ranging from 200 mm to 8 inches. It can handle wafers with thicknesses ranging from 100 to 600 microns, which is a significant advantage in the semiconductor industry. The system is designed to be flexible and can be adapted to different wafer sizes and thicknesses.

The system is designed to handle wafers with diameters ranging from 200 mm to 8 inches. It can handle wafers with thicknesses ranging from 100 to 600 microns, which is a significant advantage in the semiconductor industry. The system is designed to be flexible and can be adapted to different wafer sizes and thicknesses.

The system is designed to handle wafers with diameters ranging from 200 mm to 8 inches. It can handle wafers with thicknesses ranging from 100 to 600 microns, which is a significant advantage in the semiconductor industry. The system is designed to be flexible and can be adapted to different wafer sizes and thicknesses.
The Jicey racing car becomes the standard-bearer of the company. Integrating the company’s innovations, it promotes the company image and know-how on the circuits.

The first Jicey F1 chassis, conceived and manufactured by the engineer and inventor Jean Caillas, father of the current company President), was sold on the very day it was first exhibited at the Grand Palais car show in Paris. The purchaser was a young and brilliant Belgian driver, Georges Berger, who came from an industrial family.

He took on a remarkably skilled French mechanic, Réné Foiret, who was acquaint-ed with every detail of the car as he had taken part in the making of it at the Jicey plant in Viroflay, rue d’Estienne d’Orves.

The chassis in light alloy AG5 in the form of a ventilated box, very ahead of its time, was both light and rigid. Consequently, its road holding qualities enabled the 2.4-litre, 6-cylinder BMW 328 engine with its 3 carburettors to attain its maximum performance. All in all, it made a brilliant sports car capable of competing, often successfully, with the Cordini and Ferrari single-seaters.

In 1948, during his first competition season, the Jicey driven by Georges Berger wowed the crowds at the Roussillon Grand Prix in Perpignan, at the ‘Circuit des Remparts’ in Angoulême and at the ‘Coupe d’Argent’ in Monthéry. The competition season of 1950 was a particularly busy time as the Jicey raced on the biggest circuits in Europe such as the Grand Prix of Mone in Belgium, the Grand Prix of Rome in Italy, the Grand Prix of Nürburgring in Germany and at the Grand Trophee between Sambre and Meuse in Belgium. In the same year and with the same Georges Berger at the wheel, the swift Jicey came third at the Grand Prix des Frontières in Chimay after an exemplary struggle, beating the Vélodrome, the Maserati and the Ferrari 166 MM belonging to Hermann Roosdorp.

Naturally, the BMW engine with its removable cylinder head, was fitted with a Jicey gasket, a “real cylinder-head block” consisting of 18 metal foils.

Wearing his helmet, Georges Berger carefully observes the adjustment work carried out by his talented mechanic, Réné Foiret. The lightweight bonnet could be lifted with ease to gain access to the engine for any adjustments required before and sometimes during the race. We notice the impressive battery of the 3 vertical carburettors mounted in series at the top of the cylinder head, very characteristic of the 2-litre six-cylinder BMW 328. We can also see the striking shape of the exhaust manifold that brings the 6-cylinder heads into one tube such that they may demonstrate their synchronized power as one, sometimes accompanied by flame!

Photo centres

The first Jicey car is characterized by a profiled head-rest that was not only aesthetic, but extremely functional. When Georges Berger happened to be the victim of an off road accident during his first race at the Roussillon Grand Prix in Perpignan on the 25th April 1948, the head-rest saved his life. The car somersaulted several times and the driver’s head was protected by the head-rest that struck the ground. Berger escaped unscathed and bravely took to the wheel once again. Note the name of the Drivers and the mention of the young “Ecurie Jicey” on the left-hand side of the single-seater.

Pierre Fouquet-Hatevilain
Journalist from ‘La Vie de l’Auto’, Drivers’ column

Jicey : All precision adjustment solutions

Jicey’s strength, which may explain how the company is solicited by every type of industry, including the aeronautical, public works, optical and micro-electronics industries, lies in the fact that we do not sell a simple product, we provide the perfect solution to each and every specific adjustment problem. Adjustment shims are an ingenious answer to any mechanical assembly problem. With its full range of adjustment shims (laminated pebble shims, solid shims, extra-thin shims, separable shims), Jicey has the know-how to be able to challenge any adjustment predicament. As described in the article dedicated to Rocel Technologies, using Jicey adjustment shims enables customers to save precious time during assembly procedures and to economise in comparison with more classic solutions used to compensate the play resulting from added machining tolerances. Adjustment shims have become an inevitable accessory for every engineering and design department across the globe. As technology continues to develop, Jicey continues to innovate, optimising comfort of use with its Vivelok laminated pebble shims in composite materials, and using a process for marking the thickness of the individual layers.